Phenotype/Mechanism Prediction

[vc_row type="in_container" full_screen_row_position="middle" column_margin="default" scene_position="center" text_color="dark" text_align="left" overlay_strength="0.3" shape_divider_position="bottom" bg_image_animation="none"][vc_column column_padding="no-extra-padding" column_padding_position="all" background_color_opacity="1" background_hover_color_opacity="1" column_link_target="_self" column_shadow="none" column_border_radius="none" width="1/1" tablet_width_inherit="default" tablet_text_alignment="default" phone_text_alignment="default" overlay_strength="0.3" column_border_width="none" column_border_style="solid" bg_image_animation="none"][vc_column_text]PURPOSE: Identify mechanism of action (MoA) from animal phenotype modelsOVERVIEW: BioSymetrics leverages a proprietary machine learning platform (Augusta™) to generate structure-based activity predictions. This in combination with a vertebrate, in vivo phenotypic profiling framework has allowed us to make phenotype-mechanism association predictions across a range of potential clinical applications.INPUT: Chemical structures, experimental datasets (public and private)OUTPUT: Implicated pathways/processes[/vc_column_text][/vc_column][/vc_row][vc_row type="in_container" full_screen_row_position="middle" column_margin="default" scene_position="center" text_color="dark" text_align="center" overlay_strength="0.3" shape_divider_position="bottom" bg_image_animation="none" shape_type=""][vc_column column_padding="no-extra-padding" column_padding_position="all" background_color_opacity="1" background_hover_color_opacity="1" column_link_target="_self" column_shadow="none" column_border_radius="none" width="1/1" tablet_width_inherit="default" tablet_text_alignment="default" phone_text_alignment="default" overlay_strength="0.3" column_border_width="none" column_border_style="solid" bg_image_animation="none"][nectar_animated_title heading_tag="h6" style="color-strip-reveal" color="Accent-Color" text="USE CASE: Phenotype MoA Prediction"][nectar_image_with_hotspots image="2466" preview="https://www.biosymetrics.com/wp-content/uploads/2020/01/Phenotype_HCS_no_labels.gif" color_1="Accent-Color" hotspot_icon="numerical" tooltip="hover" tooltip_shadow="medium_depth" animation="true"][nectar_hotspot left="0.43045%" top="12.2296%" position="right"]INPUT: Phenotype Assays[/nectar_hotspot][nectar_hotspot left="12.578%" top="12.3297%" position="right"]Activity prediction model is fit and validated[/nectar_hotspot][nectar_hotspot left="32.2804%" top="12.8606%" position="right"]The model ranks a large compound library from most- to least-likely to produce the phenotype[/nectar_hotspot][nectar_hotspot left="50.9185%" top="12.2095%" position="right"]Pre-built clusters from experimental assays provide clues as to the target and pathway[/nectar_hotspot][nectar_hotspot left="77.3522%" top="12.8606%" position="right"]Enrichment of target; Analysis of most-likely active compounds indicates MoA[/nectar_hotspot][nectar_hotspot left="92.523%" top="82.8826%" position="top"]OUTPUT: Protein targets and affected pathways[/nectar_hotspot][/nectar_image_with_hotspots][vc_column_text]

Hover on the numbered hot spots above to reveal each stage of progression

[/vc_column_text][/vc_column][/vc_row][vc_row type="in_container" full_screen_row_position="middle" column_margin="default" scene_position="center" text_color="dark" text_align="left" overlay_strength="0.3" shape_divider_position="bottom" bg_image_animation="none"][vc_column column_padding="no-extra-padding" column_padding_position="all" background_color_opacity="1" background_hover_color_opacity="1" column_link_target="_self" column_shadow="none" column_border_radius="none" width="1/1" tablet_width_inherit="default" tablet_text_alignment="default" phone_text_alignment="default" overlay_strength="0.3" column_border_width="none" column_border_style="solid" bg_image_animation="none"][vc_column_text]USER BENEFITS:

  • More certainty of compound effects in vivo
  • Fewer off-target effect “surprises”/ reduced toxicity
  • leverage multiple experimental and public datasets
  • Increased confidence in lead compounds
  • Shorter path to market

PREVIOUS APPLICATIONS: Identification of causal pathway in cardiovascular, metabolomic, and neurological models[/vc_column_text][/vc_column][/vc_row][vc_row type="in_container" full_screen_row_position="middle" column_margin="default" scene_position="center" text_color="dark" text_align="center" overlay_strength="0.3" shape_divider_position="bottom" bg_image_animation="none" shape_type=""][vc_column column_padding="no-extra-padding" column_padding_position="all" background_color_opacity="1" background_hover_color_opacity="1" column_link_target="_self" column_shadow="none" column_border_radius="none" width="1/1" tablet_width_inherit="default" tablet_text_alignment="default" phone_text_alignment="default" overlay_strength="0.3" column_border_width="none" column_border_style="solid" bg_image_animation="none"][nectar_btn size="medium" button_style="regular" button_color_2="Accent-Color" icon_family="none" url="https://www.biosymetrics.com/demorequest/" text="See Augusta™ in Action" margin_top="30"][/vc_column][/vc_row]

Previous
Previous

Dealing with Missing Values in Healthcare Data

Next
Next

MedTech Showcase 2020